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Abstract
In a distributed system, replication of components, such as objects, is a well known
way of achieving availability. For increased availability, crashed and disconnected
components must be replaced by new components on available spare nodes. This
replacement results in the membership of the replicated group 'walking' over a number
of machines during system operation. In this context, we address the problem of
reconfiguring a group after the group as an entity has failed. Such a failure is termed a
group failure which, for example, can be the crash of every component in the group or
the group being partitioned into minority islands. The solution assumes crash-proof
storage, and eventual recovery of crashed nodes and healing of partitions. It guarantees
that (i) the number of groups reconfigured after a group failure is never more than one,
and (ii) the reconfigured group contains a majority of the components which were
members of the group just before the group failure occurred, so that the loss of state
information due to a group failure is minimal. Though the protocol is subject to
blocking, it remains efficient in terms of communication rounds and use of stable store,
during both normal operations and reconfiguration after a group failure.

Keywords — system availability, object groups, group failures, node crashes,

network partitions, membership views, membership services.
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1. Introduction

In a distributed system, component replication (where a component is taken to mean a

computational entity such as a process, module) is a well known way of achieving

high availability. Equally well-known are the techniques for building a replica group

using services such as membership and message ordering services. In this paper, we

will consider the issue of enhancing the availability of a replica group in the presence

of failures, while preserving the  strong consistency property which requires that the

states of all replicas that are regarded as available be mutually consistent. Dynamic

voting paradigm is an efficient way of achieving this end [Jajodia90]: when, say,

network failures partition the replica group into disjoint subgroups, availability is

maintained only in the partition (if any) that contains a majority of the replicas (called

the master subgroup), with the replicas in all other partitions becoming unavailable.

That is, the majority partition (if any) forms the master sub-group and offers the

services previously provided by the group; if a partition further disconnects a

majority of the current master subgroup from the rest, then this connected majority

becomes the new master subgroup. Thus, each newly formed master sub-group

contains a majority of the previously existed master sub-group. Replica management

with dynamic voting offers a better way of maintaining system availability than static

voting that requires a majority of all the members that initially formed the group to

remain connected. The following example illustrates dynamic voting:

Stage 0: Let the group configuration be initially G0 = {C1, C2, C3, C4, C5, C6, C7},

where Ci is the ith component.

Stage 1: Say, a network partition splits G0 into G1 = {C1, C2, C3, C4, C5} and G'1 =

{C6, C7}; G1 now becomes the master subgroup and thereby the new, second group

configuration.

Stage 2: Say, G1 splits into G2 = {C1, C2, C3} and G'2 = {C4, C5}; G2 now becomes

the master subgroup and thereby the third group configuration.

The above example indicates how the dynamic voting can preserve the availability of

group services even though the original group G0 got split into islands with each island

having less than half the members of G0. Availability can be however maitained only if

the master subgroup exists after a failure. Suppose that after stage 2, each member of

G2 detaches from other members. Now, no master subgroup exists and hence the

normal services can no longer be provided. We call this a group failure (g-failure for

short). Note that many combinations of failures can lead to a g-failure. For example, a

g-failure after stage 2 can be caused by simultaneous crashing of each member of G2,

crashing of C3 and detachment of C2 and C1, and so on. When the bound on

communication delays between components is not known with certainty, a g-failure

can occur even in the absence of any physical failure in the system: when a sudden

burst of network traffic, for instance, increases the communication delay between two

connected components beyond what was considered to be likely, each component can

falsely conclude that the other is not responding and hence must have crashed or got

disconnected.  Therefore, g-failures should not be regarded as rare events when bound

on message delays cannot be estimated accurately.

Let us assume that the components have stable states which do not get destroyed by

node crashes. Given that the component state survives node crash, it would be
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preferable to have the replica management service enhanced to cope with g-failures,

instead of relying only on cold-start to resume the group services after a g-failure. To

achieve this, we propose  a configuration protocol that enables the members of the last

master subgroup prior to a g-failure, to reconstruct the group once sufficient number

of those members have recovered and got reconnected. Of course, the protocol must

ensure that only one such group is formed. The protocol objectives cannot be met

solely by the services used to build a replica group, in particular the membership

service. To illustrate this, let us continue on the above example into stage 3 described

below:

Stage 3: C3 crashes before it could record in its stable store the fact that the new

master subgroup G2 ={C1, C2, C3} has been formed; the remaining members of G2,

C1 and C2, record in their stable store that G2 is the latest master subgroup and then

disconnect from each other.

No master-subgroup now exists and a g-failure has occurred. Next, suppose that C3

recovers and reconnects with C4 and C5, and C2 reconnects to C1. The set {C3, C4,

C5} forms the 'master subgroup' on the basis that its members form a majority of the

last group configuration G1 that is known to all of them, while {C1, C2} also forms

the 'master subgroup' on the same basis that its members are a majority in the last

known configuration G2. Now, we have two live master subgroups. To prevent this

from happening, we require that (i) a new master subgroup be considered to have been

formed only after a majority of the previous master subgroup have recorded in the

stable store the composition of the new master subgroup (req1); and, (ii) the master

subgroup constructed after a g-failure include at least a majority of the members of the

latest master subgroup formed prior to the g-failure (req2). Requirement req1 ensures

that there can be only one group configuration that qualifies to be the latest master

subgroup formed before a g-failure (and, in general, at any given time). In the above

example, a majority of G1 did not record G2 before the occurrence of the g-failure of

stage 3; so, only G1 is the latest master subgroup formed before a g-failure.

Requirement req2 permits no more than one master subgroup to emerge after a g-

failure.

We assume that the construction of the replica management system (with dynamic

voting) can avail the use of a group membership service which provides each

operational component with an agreed set of components that are currently believed

to be functioning and connected. For such a replica management system, we develop a

configuration management subsystem - the main contribution of the paper - that

provides (i) a group view installation service to enable members of the master

subgroup to record group membership information on stable store; and (ii) a group

configuration service that makes use of these stable views to enable group formation

after a g-failure as soon as enough number of the components of the last configuration

have recovered and reconnected. A prototype version of the configuration

management service described here has been implemented [Black97] on an existing

replica management system called Somersault [Murray97]. Our service enhances

Somersault by providing recovery from group failures.

The paper is structured as follows: section two introduces the system architecture,

some definitions and notations; it also specifies the two services provided by the

configuration management subsytem, namely the view installation and the group

configuration services. The next two sections describe in detail how these services are



www.manaraa.com

6

provided. Section five compares and contrasts our work with the approaches taken in

the published papers in this area, and concludes the chapter.

2. System Overview and Requirements

2.1. Assumptions and System Structure

It is assumed that a component's host node can crash but contains a stable store

whose contents survive node crashes. Components communicate with each other by

passing messages over a network which is subject to transient or long-lived partitions.

We assume that a partition eventually heals and a crashed node eventually recovers;

the bound on repair/recovery time is finite but not known with certainty. For

increased availability, we permit new components created on spare nodes to join the

group, with no restriction on the number of such joining nodes and on the time of their

joining. Our system leaves to the administrator to decide how many among the

available spare nodes should be instructed to join the group, and when. Given that the

spares instructed by the administrator are attempting to join the group, our system

enables them to join with a guarantee that they could compute the most uptodate

component state from the existing members. For simplicity, we assume that members

of a group do not voluntarily leave the group, but are only forced out because of

crashes or partitions.

2.1.1. View Maker (VM) Subsystem

We assume that our replica management system has been constructed by making use

of the services provided by a group membership subsystem. This subsystem resident

in the host node of an active component, say p, constructs membership views for p,

where a view is the set of components currently believed to be functioning and

connected to p. We call this subsytem the View Maker, or VM for short, and denote

the VM of p as VMp. In delivering the uptodate views constructed, VMp is required

to provide the abstraction of view synchrony or virtual synchrony if primary-partition

model is assumed for the underlying communication subsystem. We refer the reader to

[Babaoglu95, Babaoglu97] and [Schiper94] for a complete list of the properties of

view synchronous and virtual synchronous abstractions, respectively. Below, we

highlight some of these properties that are considered important for our discussions.

vs1: p is present in any view constructed by VMp. (self-inclusion.)

vs2: a message m from another component q is delivered to p only when the view

constructed by VMp prior to the delivery of m contains q. (view-message integrity.)

vs3: the delivery of constructed views is synchronised with the delivery of messages

such that components receive identical set of messages between consecutive views

that are identical. (view-message synchrony.)

vs4: If VMp delivers a view v, then for every component q in v, either VMq delivers

v or VMp constructs consecutive view w that excludes q. (view agreement.)

There are many protocols in the literature which can be used to implement the

assumed VM subsystem; e.g., [Birman87, Ricciardi91, Mishra91] for an

asynchronous system with the primary-partition assumption, [Melliar-Smith91,

Moser96, Amir92, Ezhilchelvan95, Babaoglu95] for partitionable asynchronous
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systems. These protocols are not designed to cope with g-failures. The subsystem

described below deals with g-failures using the services of the VM subsystem.

2.1.2. Configuration Management (CM) Subsystem

On top of the VM service exists a configuration management (CM) subsystem (see

Figure 2). CM of component p, denoted as CMp, carefully records the view

information provided by VMp in the local stable store. In a traditional replica

management system, a new view decided by VMp is usually delivered straight to p. In

our system, it reaches p via CMp. VMp regards CMp as an application and delivers

every new view it decides.

CMp of member p essentially provides the following three functionalities.

(i) it considers each view delivered by VMp and decides whether a g-failure may have

occurred. If g-failure occurrence is ruled out, CMp passes on that view to p, provided

certain conditions are met which ensure strong consistency.

(ii) if a new view delivered to p contains a spare node attempting to join the group,

CMp facilitates the spare node (in co-operation with CM of other members in the

new view) to compute the most recent component state.

(iii) if a view constructed by VMp indicates that a g-failure may have occurred, CMp
executes a configuration protocol with CM of connected components. This execution

ensures that if the group is reconfigured, it is the master subgroup of the configuration

that existed just before the g-failure was suspected to have occurred.

It must be emphasized here that CMp can only suspect, not accurately diagnose, the

occurrence of a g-failure when it inspects a new view from VMp. To illustrate this

consider the disconnected component C3 in figure 1. With the recent group

membership being {C1, C2, C3}, when CM of C3, CM3, is delivered a singleton view

{C3}, it cannot know whether the partition has split the group in three ways causing

a g-failure (as in Fig. 1(a)), or in two ways (as in Fig. 1(b)) permitting C1 and C2 to

form the next master sub-group. So, in both cases, CM3 would suspect a g-failure and

execute the configuration protocol. In case of 3-way partition, C3 will form the post-

g-failure master subgroup with, say, C1, if it re-connects to C1 while CM1 is also

executing the protocol. In the second case, when the partition heals, C3 will learn that

it has been 'walked over': C1 and C2 have formed the new master subgroup without it;

C3 will then join the pool of spares. Note that it is also possible for C3 to be walked

over in the first case: if the isolation of C3 lasts so long that C1 and C2 reconnect in

the mean time and form the next master group. Thus, the outcome of the

reconfiguration attempts by components is decided by the pattern and timing of

components recovery  and reconnection.

C1

C2

C3

C1

C2

C3

Figure 1. (a) 3-way partitioning        (b) 2-way partitioning.
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2.2. View Names within the System

Our replica management system (above the communication layer) is structured in two

layers as shown in fig. 2. Recall that CMp delivers to p a view constructed by VMp,

only if certain conditions are met. That is, a view becomes more significant as it moves

up within the system. To reflect this, we call a view differently at different levels. The

views constructed by VMp are called the membership views or simply Mviews.

VMp delivers Mviews to CMp via a queue called ViewQp where Mviews are placed

in the order of delivery. CMp deals with one Mview at a time, and only when an

Mview reaches the head of ViewQp, which is denoted as headp. CMp stores the

headp in the stable store as the new component view, provided a set of conditions are

met. The component view of p is called Cviewp. Only Cviewp is made visible to

component p and provides p with the current membership view. For reasons

discussed earlier (see req1 of Section 1), making headp as Cviewp is done in two

stages; headp is first recorded in stable store as the stabilised view of p called Sviewp,

and then installed as Cviewp. CM uses a view numbering scheme for sequentially

numbering the view contents of Sviewp and Cviewp.

Communication Layer

VM

CM

Stable Store

S-view

viewChange() msgDeliver()

msgSend()

Component

send-msg()recv-msg()

Install()

Record()
ViewQ

C-view

Figure 2. The system Architecture.

2.3. Notations and definitions

Each component p maintains three variables statusp = (member, spare), modep =

(normal, reconfiguration, waiting, joining), and view-numberp (an integer variable) in

its stable store. In addition, it also maintains two view variables, Cviewp and Sviewp,

initialised to null set, if p is spare. Sviewp has a view number associated with it, and

the view number of Cviewp is indicated by view-numberp. statusp is set to member

when p considers itself to be a member of the group, or to spare otherwise. When a

member p (with statusp = member) observes a g-failure and subsequently has to

execute the configuration protocol, it sets its modep to reconfiguration. The modep
changes to normal if p succeeds in becoming a member of the re-formed group;

otherwise p becomes a spare setting statusp = spare and modep = waiting. The

modep of a spare component p can be either waiting or joining; the former is when p

is waiting to be informed by its VMp that it has been connected to members of the

group; once connected, p attempts to join the group by setting its modep to joining. If

the join attempt by p succeeds, statusp is set to member and modep is set to normal.
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The variable view-numberp is intialised to -1 at system start time (before the group is

formed) and whenever p becomes a spare; it is incremented every time CMp installs a

new Cview.

We define the terms survivors and joiners for a pair of Mviews constructed by VMp
of a component p. Let vui, vui+1, ... vuj, j ≥ i+1, be a sequence of Mviews constructed

by VMp in that order. The set survivors(vui, vuj) is the set of all components that

survive from vui into every Mview constructed upto vuj: survivors(vui, vuj) = vui ∩
vui+1 ∩ ... ∩ vuj. The term joiners(vui, vuj) will refer to the set of components in vuj

which are not in survivors(vui, vuj): joiners(vui, vuj) = vuj - survivors(vui, vuj).

Finally, we define M_SETS(g) for a set g of components as the set of all majority

subsets s of g: M_SETS(g) = {s | s ⊆ g ∧ |s| > (|g|)/2}.

2.4. View Maintenance

When viewQp is non-empty, CMp of member p checks for the occurrence of a g-

failure by inspecting the contents of headp, and by evaluating the condition:

survivors(Cviewp, headp) ∈ M_SETS(Cviewp). If this condition is not satisfied, a g-

failure is assumed to have occurred. CMp first sends an Abort message to all

components in joiners(Cviewp, headp), informing the CM of any joiner not to

attempt at recording/installing headp. We will denote this Abort message of CMp
(which contains headp) as AMsgp(headp). CMp then sets its variable modep to

reconfiguration and executes the configuration protocol to reconfigure the group. If the

above condition is met, a copy of headp is atomically recorded in the local stable store

as the new Sviewp with the view number = (view-numberp+1), provided recording

conditions are satisfied. This Sviewp represents the potential next Cviewp. If the

recording conditions are not met, the CMp either concludes that a g-failure has

occurred and proceeds to execute the configuration protocol setting modep to

reconfiguration, or dequeues headp and proceeds to work with the next headp (if

any). The recording conditions, the need for them, and how they are verified will be

discussed in the next section.

The newly recorded Sviewp is regarded ready for becoming the next Cviewp if an

installation condition is satisfied (again, the need for this condition and how it is

verified will be discussed in the next section). In which case, CMp installs the new

component view by replacing the current Cviewp by Sviewp, and dequeues and

discards headp. The local stable store update operations are indicated here within

curly braces and are carried out atomically: {Cviewp:= Sviewp; view-numberp :=

view-numberp + 1;} If the installation condition is not met, a g-failure is considered to

have occurred and the configuration protocol is executed.

The view number of Cviewp is indicated in view-numberp. Since Cviewp and Sviewp
are modified along with their view number as an atomic operation, there will be exactly

one Cviewp and one Sviewp associated with a given view number, provided the view

numbers increase monotonically. Further, CMp installing the Sviewp (as the next

Cviewp) can be interrupted only by its suspecting a g-failure; in particular, when no g-

failure is suspected, CMp will not record a new Sviewp until the existing one is

installed. Thus, in the absence of g-failure suspicions, either the view number of

Sviewp =  the view number of Cviewp, or the view number of Sviewp =  view number
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of Cviewp+1, the latter being true while the installation condition is being waited

upon to be satisfied. Let Vup(k) be the Sview or the Cview that CMp handled with

view number k; similarly, let Vup'(k') be an Sview or a Cview that CMp' handled with

view number k', where p and p' may be the same component or distinct ones. We will

say Vup'(k') is later than Vup(k), denoted as Vup'(k') » Vup(k), if and only if k' > k.

2.5. Requirements of the CM subsystem

We now state the two requirements the CM subsystem must meet. The first one is

concerned with the "normal service" period during which no g-failure occurs, whereas

the second one is concerned with group formation after a g-failure.

Existence of at most one master subgroup at any time is achieved by ensuring that any

two components that install Cviews with identical view number, install identical

views. Let Cviewp(k) denote the Cview that p installs with view number k, k ≥ 0.

The predicate installedp(k) is true if p has installed Cviewp(k), and the predicate

!Cviewp(k) is true if Cviewp(k) is unique, i.e., no component q can install Cviewq(k)

that is different from Cviewp(k):

!Cviewp(k) ⇒  ∀ q: ¬ installedq(k) ∨ Cviewq(k) =  Cviewp(k).

Note that any view installed by a component must contain the installing component.

So, if Cviewp(k) is unique, then no component outside Cviewp(k) installs a Cview

with view number k; so, there can be only one kth membership set for the group,

hence only one kth master subgroup.

During normal service period, the CM modules of components ensure that the Cviews

installed are sequentially numbered, and that the kth Cview installed by p is unique,

provided that (k-1)th Cview installed is unique.

Formally, CM subsystem ensures:

Requirement 1:

∀ k  > 0, installedp(k)  ⇒ ∃p': installedp'(k-1); and,

∀ k  > 0, installedp(k) ∧ !Cviewp'(k-1) ⇒ !Cviewp(k).

Section 3 discusses how this requirement is met.

If we assume that Cview(0) is unique when the group is initially formed and that the

above requirement is met, then there will exist a unique latest Cview at any time. We

define this latest view as the last Cview, or simply the last.

Requirement 2: following a g-failure, a set Σ of functioning and connected components

with identical Cview, restart-view, should be formed as soon as possible, with the

following properties:

Uniqueness: Σ ∩ last ∈ M_SETS(last). If last is unique before g-failure, there can be

only one Σ that can contain a majority of the last.

Continuity: restart-view ≠ last ⇒ view-number(restart-view) =view-number(last)+1.

The sequentiality of CView numbering is preserved across g-failures. Thus, coping

with g-failures is transformed into a view installation of different kind which
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nevertheless preserves the uniqueness and numbering of Cviews during the normal

service period. Section 4 discusses how requirement 2 is met.

3. Maintaining Unique Component Views

We describe the recording and installation conditions mentioned earlier and discuss

how they help meet Requirement 1. We will first define a predicate recdp(mq) which

becomes true when CMp of component p receives a message mq from CMq of

another component q, and becomes false if CMp believes that q had crashed or got

disconnected before mq is sent. We later present a non-blocking algorithm for CMp to

evaluate this predicate.

3.1. Recording Conditions for a member component

Let us assume (as induction hypothesis) that any two members have identical Cview

with identical view number. That is, for members p and q, Cviewp = Cviewq and

view-numberp = view-numberq = k (say). Let headp, the Mview at the head of

viewQp, become non-empty for member p. survivors(Cviewp, headp) and

joiners(Cviewp, headp) follow different procedures for recording Sviews. Let us

consider the survivor or member  p first and let survivors(Cviewp, headp) ∈
M_SETS(Cviewp). As discussed in subsection 2.4, CMp can record a copy of headp
as Sviewp only if recording conditions are satisfied. These recording conditions

essentially ensure that all joiners(Cviewp, headp) have obtained view information as

well as replica states from survivors(Cviewp, headp) and made it stable. This is

necessary, as a joiner component j has no replica state and other view related

information. (It will only have view-numberj = -1, Sviewj = Cviewj = null, modej =

waiting and statusj = spare.) So, the recording conditions need to be satisfied only if

there are joiners in headp, i.e., joiners(Cviewp, headp) ≠ { }.

Suppose that there are joiners in headp. CMp multicasts a State message to every

component in headp (including itself). This message contains a copy of headp,

Cviewp, survivors(Cviewp, headp), view-numberp, and p's state. We will denote this

message of CMp as SMsgp(headp). CMp then waits to see whether (i) enough

number of survivors in headp have sent their State messages, and (ii) all joiners have

computed and recorded the component state and also the view information in their

stable store.

We will suppose that a joiner j in headp can compute the component state only by

receiving State messages from some minimum number of distinct components in

Cviewp which is the group membership when headp is being dealt with. We will

assume that this number is proportional to the size of Cviewp and is some function of

|Cviewp|, denoted as Φ(Cviewp). (If it is a fixed one and not proportional to the size

of Cviewp, then Φ(Cviewp) will be a constant function.) Since at most less than

(|Cviewp|/2)components need not survive into headp without causing a g-failure,

Φ(Cviewp) cannot exceed (|Cviewp|/2)+1. So, 1 ≤ Φ(Cviewp) ≤ (|Cviewp|/2)+1.

Recording Condition 1 (rc1): It is to verify that at least Φ(Cviewp) survivors in headp
have sent their State messages. Formally, 

|{q ∈ survivors(Cviewp, headp): recdp(SMsgq(headp))}| ≥ Φ(Cviewp).
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Recording Condition 2 (rc2): It is to ensure that all joiners in headp have computed

and stored the component state and also recorded Sview which is the same as headp.

We will suppose that after CMj of joiner j has stored the component state and

recorded an Mview, say vu, as Sviewj, it multicasts a Recorded message to every

component in vu. This message contains the recorded view vu and is denoted as

RMsgj(vu). So, the second condition is that CMp receive an RMsgj(headp) from every

joiner j in headp. Formally, ∀j ∈ joiners(Cviewp, headp): recdp(RMsgj(headp)).

If rc1 and rc2 are met, CMp atomically records a copy of headp as its next Sviewp
with view number = view-numberp+1. It then multicasts an RMsgp(headp) to all

components (including itself) in headp. If rc1 is met but not rc2, CMp dequeues

headp from ViewQp but retains a copy to evaluate survivors(Cviewp, headp) for the

next headp. If rc1 is not met, CMp proceeds to execute the reconfiguration protocol

after setting modep to reconfiguration. Since no joiner can send RMsg(headp) without

first receiving at least Φ(Cviewp) State messages, it is not possible for rc2 to be met

without rc1.

3.2. Recording Condition for a joining component

The recording condition is verified by CMj of joiner j (with modej = waiting) as soon

as its headj - the first Mview in ViewQj - is constructed by VMj. It should be

designed to become false if it is not possible for CMj to receive the minimum number

of State messages from members in headj. The design is made somewhat difficult by

the fact that when VMj delivers an Mview it cannot indicate who in that Mview are

members and who else (except j itself) are joiners. VMj can obtain such information

only from VMs of member components. Recall that, as far as VM modules of member

components are concerned, the local Cview is transparent and is merely an internal

variable used by a local application called CM (see figure 2). Moreover, when rc1 is

met but not rc2, CMp of member p dequeues headp, and proceeds to work with the

next Mview in ViewQp; therefore, VMp cannot even assume that when a given

Mview reaches the headp, the Mview it delivered immediately before headp would

have been installed as Cviewp. So, CMj cannot rely on VMj to indicate the Cview of

members in headj.

When CMj does not know Cviewp of member p in headj, its attempt to record headj
can result in a deadlock if headj contains more than one joiner. For example, if every

member p in headj crashes before sending the State or the Abort message, then each

joiner will wait for ever to receive State messages from other joiners. Therefore, it is

essential that CMj first constructs a reference Cview which can be effectively used in

place of Cviewp of member p in headj until an SMsgp(headj) is received from p which

will contain a copy of Cviewp. This reference Cview constructed for working with

headj is denoted as RefCviewj(headj) and is initially set to headj itself. (Since the

discussions are for a given headj, we will refer to RefCviewj(headj) as simply

RefCviewj.) CMj then sends a Join message to every component in headj, announcing

that it is a joiner. We denote this message as JMsgj(headj). Whenever CMj receives

JMsgj'(headj), it removes the sender j' of that message from RefCviewj. However, if it

receives an SMsg(headj), it irreversibly sets RefCviewj to the Cview contained in that

message. No JMsg(headj) that is received after receiving the first SMsg(headj) modifies
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RefCviewj. The survivors and view-number contained in the received SMsg(headj) are

noted in variables membersj and RefCviewNoj, respectively.

Once RefCviewj is initialised to headj, the recording condition stated below is waited

upon to become true or false. (Verifying the recording conndition is done concurrently

to modifying or irreversibly setting RefCviewj.) This condition is similar to rc1 stated

above for a member:

Recording Condition for joiner (rc_joiner): It verifies whether at least Φ(RefCviewj)

distinct components sent their State messages. Formally, 

|{q ∈ RefCviewj: recdj(SMsgq(headj))}| ≥ Φ(RefCviewj).

If rc_joiner is met, CMj atomically records a copy of headp as its next Sviewj with

view number = RefCviewNoj+1 and sets modej = joining. It then multicasts an

RMsgj(headj) to all components (including itself) in headj. If rc_joiner is not met or if

an Abort message AMsg(headj) is received, CMj dequeues headj from ViewQj and

discards it.

Recall that CMp multicasts AMsgp(headp) only if survivors(Cviewp, headp) ∉
M_SETS(Cv iewp) when it starts to deal with headp . So, it sends either

SMsgp(headp) or AMsgp(headp), not both, for a given headp; hence CMj will not

receive an AMsgq(headj) once rc_joiner is met. Otherwise, this would mean that CMp
sent SMsgp(headj) without suspecting a g-failure at the start, while CMq of member q

has headq = headj and survivors(Cviewq, headq) ∉ M_SETS(Cviewq). This would in

turn mean that Cviewp and Cviewq are not identical which is a violation of the

induction hypothesis.

To illustrate how certain failure cases that could lead to deadlock are handled, consider

the group {p,q,r} with unique Cviewp; i.e., Cviewp = Cviewq = Cviewr = {p,q,r}.

Let the VM modules deliver an enhanced Mview such that headp = headq = headr =

{p,q,r,j,j1,j2,j3} = headj, where j, j1, j2, and j3 are joiners. Say, p, q, and r crash before

multicasting their State messages; if {j, j1, j2, j3} remain connected, RefCviewj
eventually changes to {p, q, r} from its initial value of headj. By its definition,

recdj(SMsgc(headj)) will become false for crashed c = p, q, and r and CMj will deduce

that rc_joiner cannot be met.

3.3. Installation Conditions

Having recorded headp as Sviewp, CMp installs the Sviewp as the new Cviewp only

after verifying that a majority of the existing Cviewp have recorded the headp.

Installation condition (ic): {q ∈ survivors(Cviewp, headp): recdp(RMsgq(headp))} ∈
M_SETS(Cviewp).

The CMj of a joiner j has two installation conditions. The first one verifies whether all

joiners of headj have recorded headj; the second one is the same as the ic stated above

for member p. Note that CMj has recorded headj means that it has received State

messages from some member p in headj; so, RefCviewj = Cviewp and membersj =

survivors(Cviewp, headp).
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Installation condition 1 for joiner (ic1_joiner): 

∀c ∈ headj - membersj: recdj(RMsgc(headj)).

Installation condition 2 for joiner (ic2_joiner): 

{p∈ membersj: recdj(RMsgp(headj))} ∈ M_SETS(RefCviewj).

If both conditions are met CMj makes component j a member by atomically executing:

{Cviewj:= Sviewj; view-numberj := RefCviewNoj + 1; statusj = member; modej =

normal; }. The headj is then dequeued and discarded. If the first condition is not met,

no member p in headj would have recorded headj; so, CMj's  recording of headj is

undone by atomically executing: {Sviewj = null; modej = waiting;}. The headj is then

dequeued and discarded. If only the second condition is not met, CMj sets its modej
to reconfiguration and executes the reconfiguration protocol. Observe that when CMj
sets modej to reconfiguration, Cviewj and view-numberj remain unchanged at their

initial values which are null and -1 respectively.

3.4. Correctness and Liveness

Correctness: Suppose that CMp installs headp as the new Cviewp with view

number (k+1). The majority requirement in the installation condition (ic) implies that

a majority of Cviewp(k) have recorded headp as their Sview with view-number (k+1).

The recording condition (rc2) ensures that every CM of joiners(Cviewp(k),

Cviewp(k+1)) has also recorded headp as its Sview with view-number (k+1). No CM

records a new Sview before the existing one is installed. Therefore, given that

Cviewp(k) is unique, if CMq of a survivor or joiner q installs Cviewq(k+1), then

Cviewq(k+1) = Cviewp(k+1). This means that Cviewp(k+1) is also unique.

Liveness: CMp verifying the recording/installation condition requires the evaluation

of the predicate recdp(mq) which in turn involves checking whether an expected

message mq has been/can be received from CMq. Since the node of q can crash before

mq can be sent, the evaluation of recdp(mq) must involve checking whether q

continues to be present in the subsequent Mviews constructed by VMp. With this in

mind, we present an algorithm for evaluating recdp(mq) which does not block

indefinitely.

Figure 3 shows the ViewQ's of CMp and CMq which, for simplicity, are taken to be

identical. We will also assume that Cviewp = Cviewq = {p, q, r1, r2, r3} and view-

numberp = view-numberq = k (say). That is, Cviewp(k) is unique. Let us denote the

Mviews of ViewQp and ViewQq as: vu1 = {p, q, r1, r2, j}, vu2 = {p, q, r1, j} and

vu3 = {p, q, j}. vu1 indicates the disconnection of member r3 (from p and q) and the

inclusion of a new component j, vu2  the disconnection of r2, and vu3  the

disconnection of r1.

We define Listp(Mview) as the set of messages which VMp intends to deliver

between the delivery of Mview and the delivery of the immediate successor view to

Mview. Listp(vu3) is shown to be open and will remain so until a successor view to

vu3 is constructed. Listp(vu1) and Listp(vu2), on the other hand, are shown 'closed'

to indicate that no received message can enter these lists any longer. By the view-

message synchrony property of the VM subsystem (see §2.1.1), Listp(vu1) =

Listq(vu1), and Listp(vu2) = Listq(vu2).
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p

{p, q, r1, r2, j}

Cview  =                {p,q,r1,r2,r3}         = Cview  

    {p, q, r1, j}

      {p, q, j}

head =

    vu1 =

vu2 =

vu3 =

ViewQ

.....

.....

.....

.....

List (vu1)
p p

p

qp

List (vu2)p

List (vu3)p

q

{p, q, r1, r2, j}

    {p, q, r1, j}

      {p, q, j}

ViewQqhead =

    vu1 =

vu2 =

vu3 =

q

.....

.....

Figure 3. Closed and Open lists of messages delivered by VM after a given Mview.

The algorithm for evaluating recdp(mq) is as follows: CMp waits for one of the

following two comditions to become true.

Evaluation condition 1 (ec1): ∃ vu ∈ ViewQp: mq ∈ Listp(vu) ∧ (vu ≠ headp ⇒ q

∈survivors(headp, vu)).

Evaluation condition 2 (ec2): ∃ vu ∈ ViewQp: q ∉ vu.

The condition ec1 is true when mq is present in Listp(vu) for some Mview vu in

ViewQp and q is present in all the views VMp constructed from headp through to

this vu; ec2 becomes true when VMp constructs an Mview without q.

boolean recdp(mq)

{wait until ec1 ∨ ec2; if ec1 then return true else return false;}

Recall that CMp evaluates recdp(mq) only for such q ∈ headp. Suppose that VMp
constructs an Mview vu that does not contain q (ec2). By message-view integrity

property of VM, the expected message from q cannot be in Listp(vu). Every

Listp(vu') for vu' constructed prior to vu, is closed. If none of these closed lists

contains mq (not ec1), then q crashed or disconnected before sending mq and

recdp(mq) is evaluated to be false.

3.5. Examples

We illustrate the working of the view recording and installation procedures through

examples. The first one is based on Figure 3. We assume that Cviewp is unique and

view-numberp = k; also that p, q, and j remain connected and functioning, and hence

VMj also constructs vu1, vu2, and vu3 as shown in the figure. Let us define Φ(CVu) =

(|CVu|/2)+1.
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Suppose that r1 crashes after multicasting its State message SMsg(vu1) and Recorded

message RMsg(vu1). CMc, c = p, q, or j, will find their respective recording and

installation conditions being met, and install vu1 = {p, q, r1, r2, j} as their (k+1)th

Cview. Following the installation of vu1, CMc delivers messages in Listc(vu1) to c

which will be identical for every c. When CMc has headc = vu2, no g-failure is

suspected, as headc contains a majority of components in the current Cviewc = vu1.

Since headc has no joiner, no recording condition needs to be met. Since p, q, and j

remain connected and functioning, CMc will find the installation condition being met,

install vu2 as the (k+1)th Cview, and deliver messages in Listc(vu2) to c. Then, CMc
will install vu3 as the (k+3)th Cview and deliver messages in Listc(vu3). This example

shows that when VMc and VMc' construct an identical sequence of Mviews, CMc
and CMc' behave identically; they also deliver an identical set of messages between

two consecutive Cviews they install.

Suppose that r1 and r2 crash before multicasting their State message SMsg(vu1), then

CMc, c = p, q, or j, will find the recording conditions not being met for headc = vu1.

CMp and CMq will proceed to execute the configuration protocol, while CMj remains

with no change in its status (= spare) and mode (= waiting).

Example with Concurrent Mviews

p

  {p, p1,p2, j}

Cview  =              {p,p1,p2,q}           = Cview  

    {p, p1, p2}

head =

    vu1 =

vu2 =

ViewQ

.....

.....

List (vu1)
p p

p

qp

List (vu2)p

q

{p, p1,p2, q, j}

        {q,  j}

ViewQqhead =

    vu1' =

vu2' =

q

.....

.....

Figure 4. Concurrent and overlapping head views.

The second example is based on Figure 4 and illustrates scenarios that lead CMp of a

member p to dequeue headp without recording it, and CMj of joiner j to execute the

configuration protocol with Cviewj = null. As in the previous example, we will

assume that Cviewp is unique and view-numberp = k. The figure shows component j

attempting to join the group {p, p1, p2, q}, and VMp and VMq reaching different

view agreement due to the subsequent detachment of {p, p1, p2} from {q, j}. Let us

suppose that p, p1, and p2 remain connected to each other, and so do q and j. Let c

denote p, p1, or p2, and c' denote q or j. Every VMc constructs vu1 and vu2 shown

for p in the figure, and every VMc' constructs vu1' and vu2' shown for q. Given that

VMc and VMc' have constructed non-identical, overlapping vu1 and vu1', they must
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subsequently construct vu2 and vu2' respectively, due to the view agreement

property (see subsection 2.1.1). Let Φ(CVu) be defined to be 1, that is, a joiner can

compute the component state by receiving a single State message.

When CMc has headc = vu1, it will find rc1 met; but it will not receive RMsgj(headc)

from CMj and will find rc2 not being met. Hence, it dequeues headc, and delivers

messages in Listc(vu1) when Cviewc is still {p, p1, p2, q}. Note that Listc(vu1) will

not contain any application message from j as j does not yet consider itself as a

member. Thus, the view-message integrity property (of subsection 2.1.1) is preserved

by CMc. Since Φ(CVu) = 1, both CMq and CMj will find for headc' = vu1' the

recording conditions being met, but not the installation conditions. They will proceed

to execute the reconfiguration protocol, with Cviewq unchanged, Sviewq = vu1' =

Sviewj, and Cviewj = null.

4. Reconfiguration after a g-failure

The configuration protocol presented here meets Requirement 2 stated in §2.5:

following a g-failure, a unique set of functioning and connected components is formed

to become the (first post-g-failure) master subgroup. These components restart the

group operations with an identical Cview called the restart-view. In our protocol, the

restart-view is taken to be either the last view or an Sview SVu that is later than the

last, the latter being the case if and only if a majority of last components had recorded
1

SVu before the g-failure occurred. This invariant qualifies the restart-view to be unique

and ensures the continuity in the numbering of Cviews despite a g-failure. The master

subgroup is guaranteed unique by ensuring that it contains a majority of last. The

rationale behind the formation of the master subgroup is briefly described first.

4.1. The Rationale

Let R be a set of components that get connected after a g-failure. To achieve

reconfiguration, it needs to be determined whether a subset of components in R can

become the master subgroup. Let Sviewr and Cviewr denote the Sview and the Cview

of a component r in R, respectively. (If r is recovering from a crash it obtains Cviewr
and Sviewr from its stable store.) Let presumed_last be the latest Cview among the

Cviewr of all r in R: for every r in R, either presumed_last = Cviewr or presumed_last

» Cviewr. By definition, presumed_last is either the last Cview or some Cview

installed prior to the last.

Let us consider the Sviews recorded by the components of presumed_last (not just

those in presumed_last ∩  R). One of the following three (mutually exclusive)

situations must exist:

(i) A majority of presumed_last components recorded (at some time in the past) an

identical Sview that is later than the presumed_last.

(ii) A majority of presumed_last components never recorded an Sview that is later

than the presumed_last.

1
No last component could have installed SVu; otherwise the installed version of SVu would be the last

which, by definition, is the latest Cview installed by a component.
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(iii) Neither 1 nor 2. That is, the number of presumed_last components that recorded

an Sview that is later than the presumed_last, is at most |presumed_last|/2; similarly,

the number of presumed_last components that never recorded an Sview that is later

than the presumed_last, is at most |presumed_last|/2.

Let us first consider situation (1). Suppose that R contains (a) more than

|presumed_last |/2 components with Sview = presumed_last+ and Cview =

presumed_last, and (b) a majority subset of presumed_last+. We claim that if (a) and

(b) are met, restart-view = presumed_last+. The (simple) proof is by contradiction.

Proof: Suppose that (a) and (b) are met but presumed_last+ ≠ restart-view. Meeting

of (a) implies that a majority of components in presumed_last have recorded

presumed_last+. By the definition of restart-view, if restart-view ≠ presumed_last+,

then restart-view » presumed_last+. For this to be true, a majority of components in

presumed_last+ must have installed presumed_last+ as their Cview and then must

have proceeded to record an Sview presumed_last++ (say), presumed_last++ »

presumed_last+. None of these components that installed presumed_last+ as their

Cview, can be in R, as per the way presumed_last is computed. This means that (b)

cannot be true - a contradiction.

Thus, when (a) and (b) are met, presumed_last+ becomes the restart-view and

R∩presumed_last+ consider themselves to be the master subgroup.

In both situations (2) and (3), a majority of presumed_last have not recorded a

progressive Sview that is later than presumed_last; therefore presumed_last must be

the last, and also the restart-view. To deduce the existence of (2), R must contain more

than |presumed_last|/2 components with Sview not later than presumed_last; and for

(3) R must contain all presumed_last components.

Observe that deducing which one of the three situations exists, requires R to contain at

least a majority of presumed_last components with appropriate Sviews, or all of them

in the third situation. So, it is possible that a given R does not meet this requirement.

In that case, the attempt to form the master subgroup with R is given up, and the

recovery and reconnection of more number of components need to be awaited.

4 . 2 . The Protocol

The protocol is made up of five steps:

Step 0. CMp sets modep to reconfiguration and waits for p to be connected with

other components, i.e., for viewQp to become non-empty. Say, ViewQp becomes

non-empty and R = headp. (Note: the first Mview in ViewQp is only copied into R,

not dequeued.) The remaining four steps are done using R.

Step 1. Send {Sviewp, Cviewp} to every r in R (including itself); 

Receive {SviewRecdr, CviewRecdr} from every r in R;

Step 2. Determine the presumed_last to be the latest CviewRecdr;

Step 3. Determine the restart-view if possible; if not possible dequeue R from 

viewQp, discard R and go to step 0.

Step 4. components of R ∩ restart-view:

 install restart-view and resume group services;
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components of R - restart-view:

become spares;

Each step is described in detail in the subsections below.

4.2.1. Step 1: View Exchange

CMp multicasts a message msg(Sviewp, Cviewp, modep) containing Sviewp, Cviewp
and modep. It then evaluates the predicate recdp(msgr(SviewRecdr, CviewRecdr,

moder)) for every r ∈ R. If this predicate is true for a given r, CMp then checks

whether CviewRecdr » Cviewp and moder = normal. If this condition is true, an

exception Walked-Over is raised indicating that p has been slow in recovery, during

which time the group is reconfigured without p. This exception is handled by making

p a spare and exiting the execution of the protocol. If the predicate is false for some r,

then working with R is given up: terminate the execution with R, dequeue R from

viewQp, and go to step 0. The pseudo-code for step 1 is given below:

multicast msg(Sviewp, Cviewp, modep) to all r in R;

evaluate recdp(msgr(SviewRecdr, CviewRecdr, moder))  for every r in R;}

catch (Walked-Over): { write atomically: {Sviewp := null; statusp := spare;  

modep := waiting;}

     exit; }

if (∃r ∈ R: ¬recdp(msgr(SviewRecdr, CviewRecdr, moder))) 

then {give up on R;}

4.2.2. Step 2: Determine presumed_last

presumed_last is computed to be the latest non-null view among the received Cviews.

If a majority of presumed_last is not in R, then the execution with current R is given

up.

{  presumed_last :=  CviewRecdr of some r ∈ R: (presumed_last ≠ null) ∧ 

(∀ r' ∈ R: presumed_last = CviewRecdr' ∨ presumed_last »CviewRecdr');

  if (| presumed_last ∩ R| ≤ (| presumed_last |/2) then { give up on R;}

}

Note that by requiring that presumed-last be non-null, an R of only spare components

with mode = waiting are prohibited from forming the master subgroup.

4.2.3. Step 3: Attempt to Determine restart-view

CMp divides the components in presumed_last ∩ R into non-overlapping subsets,

called candidate sets and denoted as CSv, v ≥ 0, based on the components' Sview. Let

presumed_last+i, i ≥1, be an Sview
2
 that is later than presumed_last. Each CSv, v ≥ 1,

2 presumed_last+ need not be unique after a g-failure; different presumed_last components could have
recorded different progressive Sviews, due to their VM modules concluding view agreement at different
points. Let, for example, last = {1,2,3,4,5}. Let C5 crash and VM of C4 reach agreement on, and deliver
{1,2,3,4}. If VMs of C1, C2, and C3 suspect C4 before they reach agreement on {1,2,3,4}, they will reach
agreement straightaway on {1,2,3}. If a g-failure occurs after CMs have recorded the delivered views, Sview4
= {1,2,3,4} (say, presumed_last+1), and Sview1 = Sview2 = Sview3 = {1,2,3} (say, presumed_last+2).
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contains the components in presumed_last ∩  R whose SviewRecdr =

presumed_last+v; CS0 contains those components in presumed_last ∩ R whose

SviewRecdr is not later than presumed_last. The code for this third step is given

below.

(1) if (∃ CSv: v ≥1 ∧ CSv ∈ M_SETS(presumed_last) 

∧ presumed_last+v ∩ R ∈M_SETS(presumed_last+v) ) then

{restart-view := presumed_last+v;}

// existence of situation (1) is deduced

(2) else if (CS0 ∈ M_SETS(presumed_last) then

{restart-view := presumed_last;}

// existence of situation (2) is deduced

(3) else if (presumed_last ⊆ R) then

{restart-view := presumed_last;}

// existence of situation (3) is deduced

else {give up on R;}

4.2.4. Step 4: Commencing Group Operations

Any p that is not in the restart-view becomes a spare, otherwise CMp updates view

information in its stable store. The pseudo code is as follows:

{ if (p ∉ restart-view) then { write atomically:

{Sviewp, Cviewp := null; statusp := spare;  

modep := waiting; view-numberp := -1;}

     exit; }

write atomically:

{view-numberp:= view-number(restart-view);

Sviewp, Cviewp:= restart-view; statusp := member; 

modep := normal; }

}

4 . 2 E x a m p l e s

We explain the working of the protocol with the help of examples and by referring to

the evolution of Sviews depicted in Table 1. For simplicity, assume that all g-failures

considered in this discussion are caused by node crashes only, and partitions may

occur only when the group is being reconfigured after a g-failure.

Table 1 depicts a possible sequence of membership changes for a group of size 5 and

adopts the following style to represent the state of the view installation: an Sviewp in

normal font indicates that it has been installed as the Cviewp; an Sviewp that is yet to

be installed is written in mixed fonts: survivors (from the current Cviewp into this

Sviewp) in normal font, joiners in italics and excluded components (i.e., the ones that

are in the current Cviewp but not in the Sviewp) in bold. The superscript of an

Sviewp indicates its view-number.
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Stage

No

Sview of 

C1, C2

Sview of

 C3 Description

1 {1,2,3,4,5}

2

3

4

5

group initialised, n=5; 
C6 and C7 are spares

C4 and C5 crash; CM1 and 
CM2 record their exclusion 
first

Slow CM3 records Sview(1)

 C6 & C7 join; all active 
CM record Sview(2) = 
{1,2,3,6,7} 

CM3, CM6, and CM7 
install Sview(2)

Sview of 

C4, C5

{1,2,3,4,5}

Sview of 

C6, C7

---

---

---

---

0 0
{1,2,3,4,5}

0

{1,2,3,4,5}
0

{1,2,3,4,5}
0

{1,2,3,4,5}
0

{1,2,3,4,5}
0

{1,2,3,4,5}
0

{1,2,3,     }4,5
1

{1,2,3,     }4,5
1

{1,2,3,     }4,5
1

{1,2,3}
1

{1,2,3}
1

6

7

{1,2,3,     }4,5
1 CM1 & CM2 install 

Sview(1)

{1,2,3}
1

CM3 install its Sview(1)---

{1,2,3,4,5}
0

8

{1,2,   ,     }6,73
2

{1,2,   ,     }6,73
2

{1,2,   ,     }6,73
2

{1,2,3,4,5}
0

{1,2,3,4,5}
0

{1,2,   ,     }6,73
2

{1,2,   ,     }6,73
2

{3,6,7}
3

{3,6,7}
3

{1,2,3,6,7}
2

{1,2,3,6,7}
2

C1, C2 crash before  installing 
Mview(2); CM3, CM6, CM7 
record and then install {3,6,7}

Table 1. An evolution of Sviews.

The group is initially formed with {C1, C2, C3, C4, C5}. At the end of stage 1, each

member has {1,2,3,4,5}
0
 as its (initial) Sview in stable store; this is also the Cview. At

the end of stage 2, CM1 and CM2 have recorded Sview(1) which cannot be installed

now as {1,2} ∉ M_SETS(Sview(0)). The situation changes after stage 3, and CM1
and CM2 install Sview(1) in stage 4. In stage 6, the spares C6 and C7 join the group:

CM1, CM2, CM3, CM6, and CM7 record the Sview {1,2,3,6,7}. In the next stage,

C3, C6, and C7 install the Sview, since all components in the old view {1,2,3} are

known to have recorded {1,2,3,6,7}. But C1 and C2 crash before they could install the

recorded view. In stage 8, C3, C6, and C7 install the Cview without C1 and C2.

According to Table 1, {1,2,3,6,7} » {1,2,3} and {1,2,3,6,7} » {1,2,3,4,5}. Further,

last is {1,2,3,4,5}
0
 until stage 3, {1,2,3}

1 
in stages 4, 5, and 6, {1,2,3,6,7}

2 
in stage 7,

and {3,6,7}
3 
in stage 8.

Example 0: This example shows that the protocol is safe in not allowing more than

one master subgroup to be formed after a g-failure. Let C1 and C2 recover and get

connected after stage 8 but remain partitioned from other components. So, R = {C1,

C2}. Both C1 and C2 will estimate presumed_last to be {1,2,3}1. Since {C3, C6, C7}

is already functioning as the group, another master subgroup should not be allowed to

emerge from R even though R contains a majority subset of presumed_last.

Components of R will find that they have an identical (progressive) Sview

{1,2,3,6,7}2 »  presumed_last , and R does not contain a majority subset of

{1,2,3,6,7}2. So, none of the conditions in Step 3 of the protocol is satisfied and R

will be given up.

Example 1: This exemplifies the behaviour of the protocol under the situation 1

mentioned in section 4.1. Suppose that a g-failure occurs immediately after stage 6.
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Here, last is {1,2,3}1 and all of the last components have recorded {1,2,3,6,7}2. So,

restart-view is {1,2,3,6,7}2. Say, R = {C1, C2, C4, C6}. By step 3.1 of the protocol,

each component r in R determines restart-view to be {1,2,3,6,7}2. Finding itself not in

restart-view, C4 will exit the protocol and join the pool of spares. The others in (R ∩
restart-view) install restart-view as their Cview and resume normal group services.

Note that the view R is still the at head of every ViewQr, r ∈ R. Upon detecting

ViewQ not empty, CMs of (R ∩ restart-view) will execute the view installation

protocol as members and CM of C4 as a joiner. Assuming no further failures or

disconnections, C1, C2, C4, and C6 will get install R as the Cview.

Example 2 considers situation 2 where a majority of presumed-last have not recorded

an Sview that is later than presumed-last. Say, a g-failure occurs at the end of stage 1.

last = {1,2,3,4,5}0. Since no last component has recorded a later Sview, restart-view is

also {1,2,3,4,5}0; further, since all last components have identical Sview, an R that

contains any three (majority subset) of the last members will lead to the master

subgroup. Say, R = {C3, C4, C5}. Assuming that R remains connected for long, each

CM of R computes presumed-last to be {1,2,3,4,5}0, i.e., last itself. Next, each CM

of R forms CS0 = R and decides in step 3.2 of the protocol the restart-view to be

presumed-last = {1,2,3,4,5}0. After (re-)installing restart-view as their Cview, CMs

of C3, C4, and C5 subsequently install R as their next Cview = {3,4,5}1.

Say, after CMs of C3, C4, and C5 have installed {3, 4, 5}1 in the above scenario, let

C1 and C2 recover and reconnect with C3, C4, and C5. While CMs of C1 and C2

execute the reconfiguration protocol with R = {1,2,3,4,5}, CMs of C3, C4, and C5

will execute view installation protocol for the delivered view {1, 2, 3, 4, 5}2 in which

C1 and C2 are regarded as joiners. This conflict gets resolved very easily: CMs of C3,

C4, and C5 expect CMs of C1 and C2 to send recorded messages but instead find

messages of configuration protocol. They would then respond by sending its mode

and Cview to CM1 and CM2 which would get Walked_Over exception, become

spares, and then start executing the view installation protocol as joiners, with the head

of their ViewQ (still) having R = {1,2,3,4,5}.

In example 3, we illustrate the need for R to contain all the last members in certain

circumstances. Let a g-failure occur at the end of stage 2. The last view here is

{1,2,3,4,5}0 which is also the Cview of every member component. We will assume R

= {C1, C2, C4, C5}. The presumed_last is the same as last = {1,2,3,4,5}0. Each

component of R knows that a minority of presumed_last (i.e. two) have not recorded

an Sview that is later than presumed_last; and also that only a minority of

presumed_last (i.e. two again) are known to have recorded an Sview {1,2,3,4,5}1 that

is later than presumed_last. When Sview of C3 is {1,2,3,4,5}0 (as it is now), then

restart-view becomes {1,2,3,4,5}0. If Sview of C3 had been {1,2,3,4,5}1 (as it is at the

end of Stage 3), then restart-view becomes {1,2,3}1. Hence determining the restart-

view requires that the components of R know the Sview of C3. Here, R is given up in

step 3.3 of the protocol which requires R to contain presumed_last when neither the

situation 1 nor 2 is known to prevail.

5. Related Work

Using the traditional, 2-Phase Commit (2PC) protocol [Gray78] for atomically

updating membership-related information, [Jajodia90] maintains at most one

distinguished partition in a replicated database system. Our CM subsystem also uses
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a variation of this traditional 2PC for Cview installation and the variations are inspired

by our requirements and efficiency. In the traditional 2PC way of installing Cviews,

the coordinator - a deterministically chosen member in the new Cview - would initiate

the second (view-installation) phase after learning during the first phase that every

component of the new Cview has recorded the view. Note that while view installation

is in progress, delivery of application messages is put on hold to maintain view-

synchrony. Since we only require that at least a majority subset, not necessarily all, of

the current Cview install the next Cview, we can speed up the view-installation by

having the coordinator initiate the second phase as soon as a majority of the current

Cview and all joiners (if any) in the new Cview have recorded the new view i.e. as

soon as the installation conditions of section 3.3 are met. Further, the coordinator

based execution of traditional 2PC are susceptible to co-ordinator crashes. We

eliminate this weakness by executing our version of 2PC in a decentralised manner

where every component checks installation conditions.

Since we use a 2PC protocol for view installations, the configuration protocol cannot

be non-blocking. This blocking can be removed by using a 3PC protocol [Skeen81].

The protocol of [Dolev97] employs the principles of an extended 3PC protocol

[Keid95] and builds a unique master subgroup after a g-failure. Not surprisingly, our

architecture is remarkably similar to theirs. They differ from our protocol in one other

major aspect: a component can have, and may have to exchange, more than one Sview;

so more stable information needs to be maintained and message size is increased.

Obviously these features of [Dolev97] increase the overhead of the protocol. The

advantage, on the other hand, is that a reconnected set need only contain a particular

majority subset of last, never all last components as we would require in certain cases

when a g-failure occurs during view update (see example 3 of section 4.2).

The primary partition membership service in [Birman87, Ricciardi91, Mishra91] make

the assumption that a majority of components in the Cview do not suspect each other

and that a functioning component is rarely detected as failed. This assumption may

not hold true during periods of network instability caused for example by bursty

traffic or network congestion. This instability can lead to incorrect failure detections

which in turn can lead to g-failures. In these circumstances, our CM subsystem (also

[Dolev97]) can provide recovery from g-failures once the network traffic stabilises.

[Chandra96] establishes the weakest failure detector (denoted as ◊S/◊W) for solving

the consensus problem. Using this consensus protocol, a (primary-partition)

membership service is designed [Malloth95] and implemented [Felber98]. This

membership service can construct a totally ordered sequence of views, with a majority

of each view surviving into the next view. It blocks from delivering a new view during

the periods of g-failures (i.e., when a connected majority does not exist) and the

blocking is released as soon as the requirements of ◊S are realised. Does this mean a ◊S

based membership service provides recovery from g-failures for the weakest system

requirements of ◊S? The answer appears to be no. The first view which the ◊S based

membership service constructs after a g-failure, is what we call the restart-view (see

requirement 2 in §2.5). Determining the restart-view does not necessarily mean that

the new master subgroup exists to restart the group services. To see this, consider the

following example. Let the current view be {p, q, r, s, t} with view-number = k, and s

and t crash before a g-failure occurs. With the ◊S based membership service, it is

possible for R = {r, s, t} to reconnect and decide that the (k+1)th view is {p, q, r}.



www.manaraa.com

24

Though the restart-view is now known, the group operations cannnot be resumed as R

does not contain a majority subset of the restart-view. (Permitting any subset of R to

form the master subgroup will lead to two concurrent master subgroups if {p, q} is

operating in a seperate partition.) Group re-configuration with R must therefore wait

for either p or q to recover/reconnect. Our approach is different in that the restart-

view cannot be determined until the reconnected set (R) contains at least a majority of

the restart view itself (see section 4.1); in other words, determining the restart-view

straight leads to the re-formation of the group (barring the occurrence of further g-

failures). As a future work, we intend to compare these two approaches further in a

more detailed manner.

6. Conclusions

Group failures can occur even in the absence of any physical failures, and be caused

by sudden bursts in message traffic with potentials to lead to virtual partitions. We

have designed and implemented a configuration management subsystem which can

provide automatic recovery from group failures, once the real/virtual partitions

disappear and components recover. Our system employs a variation of two-phase

commit protocol for view updates. Consequently, the recovery provided is subject to

blocking. On the other hand, it is efficient in terms of message size, message rounds

and use of stable store, during both normal operations and reconfiguration after a

group failure; it costs only one extra message round to update views in the normal,

failure-free periods. This low, failure-free overhead makes our system particularly

suited to soft real-time systems where it can be incorporated in the manner proposed

in [Hurfin98].
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